Düzensiz düzenlenmiş yapıların keşfiyle önceki inançlar alt üst oldu.
Birçoğu için, “kristaller” kelimesi, iyileştirici güçlere sahip olduğuna inanılan gökkuşağı renklerinden prizmalar veya yarı saydam taşlar yaratan parlayan güneş ışığı görüntülerini çağrıştırır. Ancak bilim ve mühendislikte kristaller daha teknik bir tanım kazanıyor. Atomlar, moleküller veya nanoparçacıklar gibi bileşenleri uzayda düzenli olarak düzenlenmiş maddeler olarak görülürler. Başka bir deyişle, kristaller, bileşenlerinin düzenli dizilişi ile tanımlanır. Tanıdık örnekler arasında elmaslar, sofra tuzu ve küp şeker bulunur.
Yaygın olarak kabul edilen bu tanımın aksine, Rensselaer Politeknik Enstitüsü Kimya ve Biyoloji Mühendisliği Bölümü’nde Yardımcı Doçent olan Sangwoo Lee tarafından yürütülen yakın tarihli bir çalışma, kristal yapıların ilginç bir yönünü ortaya çıkararak, kristaller içindeki bileşenlerin düzeninin olmadığını ortaya koyuyor. Her zaman mutlaka düzenli.
Bu keşif, malzeme bilimi alanını ilerletiyor ve içinde kullanılan malzemeler için gerçekleşmemiş çıkarımlara sahip.[{” attribute=””>semiconductors, solar panels, and electric vehicle technologies.
One of the most common and important classes of crystal structures is the close-packed structures of regular spheres constructed by stacking layers of spheres in a honeycomb arrangement. There are many ways to stack the layers to construct close-packed structures, and how nature selects specific stacking is an important question in materials and physics research. In the close-packing construction, there is a very unusual structure with irregularly spaced constituents known as the random stacking of two-dimensional hexagonal layers (RHCP). This structure was first observed from cobalt metal in 1942, but it has been regarded as a transitional and energetically unpreferred state.
Lee’s research group collected X-ray scattering data from soft model nanoparticles made of polymers and realized that the scattering data contains important results about RHCP but is very complicated. Then, Patrick Underhill, professor in Rensselaer’s Department of Chemical and Biological Engineering, enabled the analysis of the scattering data using the supercomputer system, Artificial Intelligence Multiprocessing Optimized System (AiMOS), at the Center for Computational Innovations.
“What we found is that the RHCP structure is, very likely, a stable structure, and this is the reason that RHCP has been widely observed in many materials and naturally occurring crystal systems,” said Lee. “This finding challenges the classical definition of crystals.”
The study provides insights into the phenomenon known as polytypism, which enables the formation of RHCP and other close-packed structures. A representative material with polytypism is silicon carbide, widely used for high-voltage electronics in electric vehicles and as hard materials for body armor. Lee’s team’s findings indicate that those polytypic materials may have continuous structural transitions, including the non-classical random arrangements with new useful properties.
“The problem of how soft particles pack seems straightforward, but even the most basic questions are challenging to answer,” said Kevin Dorfman of the University of Minnesota-Twin Cities, who is unaffiliated with this research. “This paper provides compelling evidence for a continuous transition between face-centered cubic (FCC) and hexagonal close-packed (HCP) lattices, which implies a stable random hexagonal close-packed phase between them and, thus, makes an important breakthrough in materials science.”
“I am particularly pleased with this discovery, which shows the power of advanced computation to make an important breakthrough in materials science by decoding the molecular level structures in soft materials,” said Shekhar Garde, dean of Rensselaer’s School of Engineering. “Lee and Underhill’s work at Rensselaer also promises to open up opportunities for many technological applications for these new materials.”
Reference: “Continuous transition of colloidal crystals through stable random orders” by Juhong Ahn, Liwen Chen, Patrick T. Underhill, Guillaume Freychet, Mikhail Zhernenkovc and Sangwoo Lee, 14 April 2023, Soft Matter.
DOI: 10.1039/D3SM00199G
Lee and Underhill were joined in research by Rensselaer’s Juhong Ahn, Liwen Chen of the University of Shanghai for Science and Technology, and Guillaume Freychet and Mikhail Zhernenkov of Brookhaven National Laboratory.
“Analist. Tutkulu zombi gurusu. Twitter uygulayıcısı. İnternet fanatiği. Dost pastırma hayranı.”
More Stories
Bilim insanları dünyadaki en büyük demir cevheri yataklarında milyar yıllık bir sırrı keşfetti
Fosillere göre tarih öncesi deniz ineği, timsah ve köpekbalığı tarafından yenildi
Büyük bir bindirme fayı üzerine yapılan yeni araştırma, bir sonraki büyük depremin yakın olabileceğini gösteriyor